Что такое химия аналитическая: электрохимические методы? Значение химия аналитическая: электрохимические методы в энциклопедии Кольера

химия аналитическая: электрохимические методы - К статье ХИМИЯ АНАЛИТИЧЕСКАЯ

В основе электрохимических методов анализа лежит исследование процессов, протекающих в электролитах или на поверхности погруженных в них электродов. Эти процессы могут быть равновесными или неравновесными в зависимости от условий эксперимента и давать информацию о скорости химических реакций, природе участвующих в них соединений, термодинамике (см. также ЭЛЕКТРОХИМИЯ). Наиболее широко в аналитической химии используются следующие электрохимические методы.

Потенциометрия. В потенциометрических методах измеряется разность потенциалов между индикаторным электродом и электродом сравнения в отсутствие тока в электрохимической цепи. В этих условиях анализируемая система находится в равновесии, и электродный потенциал связан с концентрацией раствора уравнением Нернста:

где E. - стандартный потенциал окислительно-восстановительной пары ox + ne red, R - универсальная газовая постоянная, T - абсолютная температура, F - постоянная Фарадея, a - активность. При потенциометрических измерениях широко применяются ионоселективные электроды, чувствительные к какому-то одному иону (водорода, натрия, аммония). Простейший индикаторный электрод - это какой-либо благородный металл, например платина. При потенциометрическом титровании в анализируемый раствор порциями добавляют стандартный раствор реагента (см. выше Титриметрия) и следят за изменением потенциала. Получаемые S-образные кривые позволяют найти точку эквивалентности, константу равновесия, стандартный потенциал.

Вольтамперометрия. Во всех вариантах вольтамперометрических методов используют индикаторный микроэлектрод, с помощью которого получают вольтамперограммы - кривые зависимости силы тока в электрохимической ячейке от разности потенциалов. Второй, вспомогательный электрод - неполяризующийся - имеет большую поверхность, так что его потенциал практически не меняется при прохождении тока. Индикаторные электроды изготовляют в виде капилляра, из которого по каплям вытекает жидкий металл (ртуть, амальгама, галлий). Вольтамперограммы позволяют идентифицировать растворенные вещества в электролите, определять их концентрацию, а в некоторых случаях находить термодинамические и кинетические параметры. Первый вольтамперометрический метод - полярография - был предложен Я.Гейровским в 1922. Рабочим электродом в нем служил капающий ртутный электрод. Эту методику обычно применяют для определения ионов металлов (Pb2+, Cd2+, Cu2+). Среди других вольтамперометрических методов - вольтамперометрия с линейной разверткой (с монотонным изменением) потенциала, циклическая (с быстрой треугольной разверткой потенциала) вольтамперометрия. С их помощью изучают механизм электродных реакций, определяют малые концентрации веществ в растворе.

Амперометрия. В амперометрии потенциал рабочего (индикаторного) электрода поддерживают постоянным и измеряют предельный диффузионный ток в растворе. При амперометрическом титровании точку эквивалентности находят по излому кривой сила тока - объем добавленного рабочего раствора. Хроноамперометрические методы основаны на измерении зависимости силы тока от времени и применяются для определения коэффициентов диффузии и констант скорости. Электрохимические ячейки, работающие по принципу амперометрии, используются в качестве датчиков в жидкостной хроматографии.

Кондуктометрия. Этот метод основан на измерении электропроводности раствора. Условия опыта подбирают таким образом, чтобы преобладающий вклад в измеряемый потенциал ячейки вносило омическое падение напряжения IR (R - сопротивление раствора), а не скачок потенциала на границе раздела электрод/раствор. Электропроводность однокомпонентного раствора можно связать с его концентрацией, а для сложных систем оценивается общее содержание ионов в растворе. Широко используется и кондуктометрическое титрование, когда к анализируемому раствору порциями добавляют известный реагент и следят за изменением электропроводности.

Кулонометрия. В кулонометрии проводят полный электролиз раствора при контролируемом потенциале и измеряют количество электричества, необходимое для этого. Количество вещества определяют с помощью закона Фарадея P = QM/Fn, где P - масса (г) электрохимически превращенного вещества, Q - количество электричества (Кл), M - молекулярная масса вещества, F - постоянная Фарадея, n - число электронов, вовлеченных в электрохимическое превращение одной молекулы. Кулонометрические методы абсолютны, т.е. не нуждаются в калибровочных кривых. При кулоногравиметрии количество вещества, подвергшегося электролизу, определяют взвешиванием электрода до и после эксперимента.

химия аналитическая: электрохимические методы

К статье ХИМИЯ АНАЛИТИЧЕСКАЯ В основе электрохимических метод ов анализа лежит исследование процессов, протекающих в электролитах или на поверхности погруженных в них электрод ов. Эти процессы могут быть равновесными или неравновесными в зависимости от условий эксперимента и давать информацию о скорости химических реакций, природе участвующих в них соединений, термодинамике (см. также ЭЛЕКТРОХИМИЯ). Наиболее широко в аналитической химии используются следующие электрохимические методы. Потенциометрия. В потенциометрических методах измеряется разность потенциал ов между индикаторным электродом и электродом сравнения в отсутствие тока в электрохимической цепи . В этих условиях анализируемая система находится в равновесии, и электродный потенциал связан с концентрацией раствор а уравнением Нернста: где E. - стандартный потенциал окислительно-восстановительной пары ox + ne red, R - универсальная газовая постоянная, T - абсолютная температура , F - постоянная Фарадея, a - активность . При потенциометрических измерениях широко применяются ионоселективные электроды , чувствительные к какому-то одному иону (водорода, натрия, аммония). Простейший индикаторный электрод - это какой-либо благородный металл , например платина . При потенциометрическом титровании в анализируемый раствор порциями добавляют стандартный раствор реагент а (см. выше Титриметрия) и следят за изменением потенциала. Получаемые S-образные кривые позволяют найти точку эквивалентности, константу равновесия, стандартный потенциал. Вольтамперометрия . Во всех вариантах вольтамперометрических методов используют индикаторный микроэлектрод, с помощью которого получают вольтамперограммы - кривые зависимости силы тока в электрохимической ячейке от разности потенциалов. Второй , вспомогательный электрод - неполяризующийся - имеет большую поверхность , так что его потенциал практически не меняется при прохождении тока. Индикаторные электроды изготовляют в виде капилляра, из которого по каплям вытекает жидкий металл ( ртуть , амальгама , галлий ). Вольтамперограммы позволяют идентифицировать растворенные вещества в электролите, определять их концентрацию, а в некоторых случаях находить термодинамические и кинетические параметры. Первый вольтамперометрический метод - полярография - был предложен Я.Гейровским в 1922. Рабочим электродом в нем служил капающий ртутный электрод. Эту методику обычно применяют для определения ионов металлов (Pb2+, Cd2+, Cu2+). Среди других вольтамперометрических методов - вольтамперометрия с линейной разверткой (с монотонным изменением) потенциала, циклическая (с быстрой треугольной разверткой потенциала) вольтамперометрия. С их помощью изучают механизм электродных реакций, определяют малые концентрации веществ в растворе. Амперометрия. В амперометрии потенциал рабочего (индикаторного) электрода поддерживают постоянным и измеряют предельный диффузионный ток в растворе. При амперометрическом титровании точку эквивалентности находят по излому кривой сила тока - объем добавленного рабочего раствора. Хроноамперометрические методы основаны на измерении зависимости силы тока от времени и применяются для определения коэффициентов диффузии и констант скорости. Электрохимические ячейки, работающие по принципу амперометрии, используются в качестве датчиков в жидкостной хроматографии. Кондуктометрия. Этот метод основан на измерении электропроводности раствора. Условия опыта подбирают таким образом, чтобы преобладающий вклад в измеряемый потенциал ячейки вносило омическое падение напряжения IR (R - сопротивление раствора), а не скачок потенциала на границе раздела электрод/раствор. Электропроводность однокомпонентного раствора можно связать с его концентрацией, а для сложных систем оценивается общее содержание ионов в растворе. Широко используется и кондуктометрическое титрование , когда к анализируемому раствору порциями добавляют известный реагент и следят за изменением электропроводности. Кулонометрия. В кулонометрии проводят полный электролиз раствора при контролируемом потенциале и измеряют количество электричества, необходимое для этого . Количество вещества определяют с помощью закона Фарадея P = QM/Fn, где P - масса (г) электрохимически превращенного вещества, Q - количество электричества (Кл), M - молекулярная масса вещества, F - постоянная Фарадея, n - число электронов, вовлеченных в электрохимическое превращение одной молекулы . Кулонометрические методы абсолютны, т.е. не нуждаются в калибровочных кривых . При кулоногравиметрии количество вещества, подвергшегося электролизу, определяют взвешиванием электрода до и после эксперимента.

Однокоренные и похожие слова:

акротерий хим хим... хима химам химить химки химии история химии история: восемнадцатый век химии история: двадцатый век химии история: девятнадцатый век химии история: зарождение современной химии химии история: истоки химии химии природных соединений институт химии силикатов институт химистить химия химия аналитическая химия аналитическая: методы анализа химия аналитическая: основные положения химия аналитическая: селективные определения химия аналитическая: спектроскопия химия аналитическая: хроматографические методы химия ж. химия и методы переработки нефти химия и методы переработки нефти: бензин химия и методы переработки нефти: гидрокрекинг химия и методы переработки нефти: другие продукты химия и методы переработки нефти: другие процессы производства бензина химия и методы переработки нефти: каталитический крекинг химия и методы переработки нефти: керосин химия и методы переработки нефти: масла и смазки химия и методы переработки нефти: очистка и переработка нефти химия и методы переработки нефти: очистка легких продуктов химия и методы переработки нефти: перегонка химия и методы переработки нефти: риформинг химия и методы переработки нефти: термический крекинг химия твердого тела

Узнайте лексическое, прямое, переносное значение следующих слов:



Прикладные словари

Справочные словари

Толковые словари

Жаргонные словари

Гуманитарные словари

Технические словари