- метод научного познания и рассуждения, основанный на выведении (дедукций) заключений из гипотез и других посылок, истинностное значение которых неизвестно . Поскольку в дедуктивном рассуждении значение истинности переносится на заключение , а посылками служат гипотезы, то и заключение Г.-д. рассуждения имеет лишь вероятностный характер . Соответственно типу посылок Г.-д. рассуждения разделяют на две основные группы. К первой , наи более многочисленной группе относят рассуждения, посылками которых являются гипотезы и эмпирические обобщения, истинность которых еще нужно установить . Ко второй относятся Г.-д. выводы из таких посылок, которые заведомо ложны или ложность которых может быть установлена. Выдвигая некоторое предположение в качестве посылки , можно из него дедуцировать следствия, противоречащие хорошо известным фактам или истинным утверждениям. Таким путем в ходе дискуссии можно убедить оппонента в ложности его предположений. Примером является метод приведения к абсурду. В научном познании Г.-д.м. получил широкое распространение и развитие в XVII—XVIII вв., когда были достигнуты значительные успехи в области изучения механического движения земных и небесных тел. Первые попытки применения Г.-д.м. были сделаны в механике, в частности в исследованиях Галилея . Теория механики, изложенная в «Математических началах натуральной философии» Ньютона, представляет собой Г.-д. систему, посылками которой служат основные законы движения. Успех Г.-д.м. в области механики и влияние идей Ньютона обусловили широкое распространение э того метода в области точного естествознания. С логической точки зрения Г.-д. система представляет собой иерархию гипотез, степень абстрактности и общности которых увеличивается по мере удаления от эмпирического базиса. На вершине располагаются гипотезы, имеющие наиболее общий характер и по этом у обладающие наибольшей логической силой . Из них как из посылок выводятся гипотезы более низкого уровня. На самом низшем уровне системы находятся гипотезы, которые можно сопоставить с эмпирическими данными. В современной науке многие теории строятся в виде Г.-д. системы. Такое построение научных теорий имеет большое методологическое значение в связи с тем, что не только дает возможность исследовать логические взаимосвязи между гипотезами разного уровня абстрактности, но и позволяет осуществлять эмпирическую проверку и подтверждение научных гипотез и теорий. Гипотезы самого низкого уровня проверяются путем сопоставления их с эмпирическими данными. Если они подтверждаются этими данными, то это служит косвенным подтверждением и гипотез более высокого уровня, из которых логически выведены первые гипотезы. Наиболее общие принципы научных теорий нельзя непосредственно сопоставить с действительностью, с тем чтобы удостовериться в их истинности, ибо они, как правило , говорят об абстрактных или идеальных объектах, которые сами по себе не существуют в действительности. Для того чтобы соотнести общие принципы с действительностью, нужно с помощью длинной цепи логических выводов получить из них следствия, говорящие уже не об идеальных, а о реальных объектах. Эти следствия можно проверить непосредственно. Поэтому ученые и стремятся придавать своим теориям структуру Г.-д. системы. Разновидностью Г.-д. м. считают метод математической гипотезы, который используется как важнейшее эвристическое средство для открытия закономерностей в естествознании. Обычно в качестве гипотез здесь выступают некоторые уравнения , представляющие модификацию ранее известных и проверенных соотношений. Изменяя эти соотношения, составляют новое уравнение , выражающее гипотезу, которая относится к неисследованным явлени- ям. Так, М. Борн и В. Гейзенберг приняли за основу канонические уравнения классической механики, однако вместо чисел ввели в них матрицы, построив таким способом матричный вариант квантовой механики. В процессе научного исследования наиболее трудная — подлинно творческая — задача состоит в том, чтобы открыть и сформулировать те принципы и гипотезы, которые могут послужить основой всех последующих выводов. Г.-д. м. играет в этом процессе вспомогательную роль , поскольку с его помощью не выдвигаются новые гипотезы, а только выводятся и проверяются вытекающие из них следствия.
Что такое Гипотетико-Дедуктивный Метод? Значение Гипотетико-Дедуктивный Метод в словаре логики
Гипотетико-Дедуктивный Метод - - метод научного познания и рассуждения, основанный на выведении (дедукций) заключений из гипотез и других посылок, истинностное значение которых неизвестно. Поскольку в дедуктивном рассуждении значение истинности переносится на заключение, а посылками служат гипотезы, то и заключение Г.-д. рассуждения имеет лишь вероятностный характер. Соответственно типу посылок Г.-д. рассуждения разделяют на две основные группы. К первой, наиболее многочисленной группе относят рассуждения, посылками которых являются гипотезы и эмпирические обобщения, истинность которых еще нужно установить. Ко второй относятся Г.-д. выводы из таких посылок, которые заведомо ложны или ложность которых может быть установлена. Выдвигая некоторое предположение в качестве посылки, можно из него дедуцировать следствия, противоречащие хорошо известным фактам или истинным утверждениям. Таким путем в ходе дискуссии можно убедить оппонента в ложности его предположений. Примером является метод приведения к абсурду. В научном познании Г.-д.м. получил широкое распространение и развитие в XVII—XVIII вв., когда были достигнуты значительные успехи в области изучения механического движения земных и небесных тел. Первые попытки применения Г.-д.м. были сделаны в механике, в частности в исследованиях Галилея. Теория механики, изложенная в «Математических началах натуральной философии» Ньютона, представляет собой Г.-д. систему, посылками которой служат основные законы движения. Успех Г.-д.м. в области механики и влияние идей Ньютона обусловили широкое распространение этого метода в области точного естествознания. С логической точки зрения Г.-д. система представляет собой иерархию гипотез, степень абстрактности и общности которых увеличивается по мере удаления от эмпирического базиса. На вершине располагаются гипотезы, имеющие наиболее общий характер и поэтому обладающие наибольшей логической силой. Из них как из посылок выводятся гипотезы более низкого уровня. На самом низшем уровне системы находятся гипотезы, которые можно сопоставить с эмпирическими данными. В современной науке многие теории строятся в виде Г.-д. системы. Такое построение научных теорий имеет большое методологическое значение в связи с тем, что не только дает возможность исследовать логические взаимосвязи между гипотезами разного уровня абстрактности, но и позволяет осуществлять эмпирическую проверку и подтверждение научных гипотез и теорий. Гипотезы самого низкого уровня проверяются путем сопоставления их с эмпирическими данными. Если они подтверждаются этими данными, то это служит косвенным подтверждением и гипотез более высокого уровня, из которых логически выведены первые гипотезы. Наиболее общие принципы научных теорий нельзя непосредственно сопоставить с действительностью, с тем чтобы удостовериться в их истинности, ибо они, как правило, говорят об абстрактных или идеальных объектах, которые сами по себе не существуют в действительности. Для того чтобы соотнести общие принципы с действительностью, нужно с помощью длинной цепи логических выводов получить из них следствия, говорящие уже не об идеальных, а о реальных объектах. Эти следствия можно проверить непосредственно. Поэтому ученые и стремятся придавать своим теориям структуру Г.-д. системы. Разновидностью Г.-д. м. считают метод математической гипотезы, который используется как важнейшее эвристическое средство для открытия закономерностей в естествознании. Обычно в качестве гипотез здесь выступают некоторые уравнения, представляющие модификацию ранее известных и проверенных соотношений. Изменяя эти соотношения, составляют новое уравнение, выражающее гипотезу, которая относится к неисследованным явлени- ям. Так, М. Борн и В. Гейзенберг приняли за основу канонические уравнения классической механики, однако вместо чисел ввели в них матрицы, построив таким способом матричный вариант квантовой механики. В процессе научного исследования наиболее трудная — подлинно творческая — задача состоит в том, чтобы открыть и сформулировать те принципы и гипотезы, которые могут послужить основой всех последующих выводов. Г.-д. м. играет в этом процессе вспомогательную роль, поскольку с его помощью не выдвигаются новые гипотезы, а только выводятся и проверяются вытекающие из них следствия.
Узнайте лексическое, прямое, переносное значение следующих слов:
- Доказательство По Случаям - или: Доказательство разбором случаев, — логически правильное рассуждение, ...
- Доказательство Конструктивное - см.: Конструктивная логика. ...
- Дихотомия - (от греч, dicha и tome рассечение на ...
- Дискуссия - (от лат. discussio — рассмотрение, исследование) — обсуждение ...
- Дилемма - (от греч. di(s) дважды и lemma ...
- Дизъюнктивный Силлогизм - см.: Модус понендо толленс. Модус толлендо поненс. ...
- Диаграммы Венна - геометрическое наглядное представление отношений между классами (объемами ...
- Вопрос - — предложение, выражающее недостаток информации о к.л. объекте, ...
- Возможность Логическая - одна из модальных характеристик высказывания, наряду с ...
- Вероятностная Логика - — разновидность многозначной логики, в которой высказываниям (суждениям) ...
- Вербальное Определение - — определение, сформулированное в языке с помощью слов ...
- Бритва Оккама - методологический принцип, сформулированный англ, философом и логиком ...
- Ассерторический - (от лат. asserto утверждаю) установленный, достоверный. ...
- Аргументация Теоретическая - аргументация, опирающаяся на рассуждение и не пользующаяся ...
- Закон Коммутации - (от лат. commutatio изменение, перемена) — логический ...