Что такое суда на воздушной подушке? Значение суда на воздушной подушке в энциклопедии Кольера

суда на воздушной подушке -

аппараты, поддерживающие себя над опорной (земной или водной) поверхностью с помощью воздушной подушки, создаваемой судовыми вентиляторами. В отличие от обычных судов и колесного транспорта суда на воздушной подушке (СВП) не имеют физического контакта с поверхностью, над которой движутся, а в отличие от летательных аппаратов они не могут подняться над этой поверхностью на высоту, превышающую некоторую часть их горизонтального размера.

При заданных массе и скорости СВП требуется мощность в 3-4 раза больше, чем автомобилю; столько же они проигрывают и обычным судам. Однако для движения СВП требуется в 2-4 раза меньшая мощность, чем для полета самолетов или вертолетов. СВП находят применение в тех случаях, когда не может быть эффективно использован автомобильный, железнодорожный и обычный водный транспорт. СВП могут переправить десантные группы с большого десантного корабля на берег со скоростью, достигающей 60 узлов (100 км/ч). В отличие от обычных средств переправы СВП могут не останавливаться около берега, а пройти дальше и даже преодолеть 5%-й подъем или препятствие высотой до трети высоты юбки. Эти транспортные средства могут использоваться на мелководье, в засоренных и арктических водах, в условиях открытой местности. Идею движения на воздушной подушке впервые сформулировал шведский ученый Э.Сведенборг (1716). Ранее, чем в других странах, техникой СВП занялись в Австрии и России.

Типы СВП. На рисунке приведены схематические поперечные сечения трех типов СВП: камерного, соплощелевого и многорядного соплового. Во всех схемах между аппаратом и опорной поверхностью с помощью мощных турбореактивных двигателей и высоконапорных вентиляторов создается воздушная подушка. В простейшей из схем, камерной, под куполообразное днище (в успокоительную камеру) установленный по центру вентилятор подает воздух. В соплощелевой схеме подушка создается потоком воздуха из кольцевого сопла, образованного юбкой и центральной частью с плоским днищем. Воздушная завеса по периметру судна препятствует выходу воздуха из подушки. Один из вариантов соплощелевой схемы - схема с периметрической водяной завесой, пригодная для движения над водной поверхностью. В многорядной сопловой схеме подушка образуется рядами кольцевых рециркуляционных сопел с разными уровнями создаваемого давления. В последних двух случаях для создания подушки требуются менее мощные вентиляторы. Компания "Форд мотор" предложила создать СВП "Левапед", у которого воздушная подушка очень тонкая, как в своеобразном газовом подшипнике, и он может двигаться только над специальной гладкой поверхностью типа рельсового пути. Канадское отделение фирмы "Авро" разрабатывает СВП соплощелевого типа с настолько мощными вентиляторами, что он может подниматься и лететь как реактивный самолет.

Создание тяги и управление. Поступательное движение СВП может обеспечиваться: 1) горизонтальными соплами, в которые поступает воздух от подъемных вентиляторов; 2) наклоном (дифферентом) судна в направлении движения так, чтобы возникла горизонтальная составляющая силы тяги; 3) установкой воздухозаборников подъемных вентиляторов в направлении движения таким образом, чтобы при всасывании воздуха также возникала нужная сила тяги; 4) обычными воздушными винтами. Иногда движущая сила создается комбинацией этих методов. Наиболее эффективно создание тяги с помощью воздушных винтов, однако вращающиеся винты на СВП представляют опасность и для пассажиров, и для команды.

Режим торможения СВП, как и поворот без бокового заноса, обеспечиваются поворотом потока тяговых устройств. Для улучшения путевой устойчивости ставят вертикальные стабилизаторы, как у самолетов. Высота подъема регулируется основными вентиляторами.

Трудности. Основными проблемами СВП, которые нужно решить, являются: уменьшение мощности, затрачиваемой на висение; улучшение соотношения между высотой висения и размерами судна; совершенствование управления при движении. Для решения первой проблемы требуется подробный аэродинамический расчет конструкции и тщательное проектирование подъемных вентиляторов и внутренних воздуховодов. Для решения второй проблемы необходимо надежное знание полей течения между днищем и опорной поверхностью земли или воды. Для решения последней проблемы нужно оптимизировать интегральную аэродинамику СВП и его двигателя.

суда на воздушной подушке

аппараты, поддерживающие себя над опорной ( земной или водной) поверхностью с помощью воздушной подушки, создаваемой судов ыми вентилятор ами. В отличие от обычных судов и колесного транспорт а суда на воздушной подушке (СВП) не имеют физического контакта с поверхностью, над которой движутся, а в отличие от летательных аппаратов они не могут подняться над этой поверхностью на высоту, превышающую некоторую часть их горизонтального размера. При заданных массе и скорости СВП требуется мощность в 3-4 раза больше , чем автомобилю; с только же они проигрывают и обычным судам. Однако для движения СВП требуется в 2-4 раза меньшая мощность, чем для полета самолетов или вертолетов. СВП находят применение в тех случаях, когда не может быть эффективно использован автомобильный , железнодорожный и обычный водный транспорт. СВП могут переправить десантные группы с большого десантного корабля на берег со скоростью, достигающей 60 узлов (100 км/ч). В отличие от обычных средств переправы СВП могут не останавливаться около берега , а пройти дальше и даже преодолеть 5%-й подъем или препятствие высотой до трети высоты юбки. Эти транспортные средства могут использоваться на мелководье , в засоренных и арктических водах, в условиях открытой местности. Идею движения на воздушной подушке впервые сформулировал шведский ученый Э.Сведенборг (1716). Ранее , чем в других странах, техникой СВП занялись в Австрии и России. Типы СВП. На рисунке приведены схема тические поперечные сечения трех типов СВП: камерного, соплощелевого и многорядного соплового. Во всех схемах между аппаратом и опорной поверхностью с помощью мощных турбореактивных двигателей и высоконапорных вентиляторов создается воздушная подушка . В простейшей из схем, камерной, под куполообразное днище (в успокоительную камеру) установленный по центру вентилятор подает воздух . В соплощелевой схеме подушка создается потоком воздуха из кольцевого сопла, образованного юбкой и центральной частью с плоским днищем. Воздушная завеса по периметру судна препятствует выходу воздуха из подушки. Один из вариантов соплощелевой схемы - схема с периметрической водяной завесой, пригодная для движения над водной поверхностью. В многорядной сопловой схеме подушка образуется рядами кольцевых рециркуляционных сопел с разными уровнями создаваемого давления. В последних двух случаях для создания подушки требуются менее мощные вентиляторы . Компания "Форд мотор" предложила создать СВП "Левапед", у которого воздушная подушка очень тонкая, как в своеобразном газовом подшипнике, и он может двигаться только над специальной гладкой поверхностью типа рельсового пути. Канадское отделение фирмы "Авро" разрабатывает СВП соплощелевого типа с на столько мощными вентиляторами, что он может подниматься и лететь как реактивный самолет. Создание тяги и управление . Поступательное движение СВП может обеспечиваться : 1) горизонтальными соплами, в которые поступает воздух от подъемных вентиляторов; 2) наклоном (дифферентом) судна в направлении движения так, чтобы возникла горизонтальная составляющая силы тяги; 3) установкой воздухозаборников подъемных вентиляторов в направлении движения таким образом, чтобы при всасывании воздуха также возникала нужная сила тяги; 4) обычными воздушными винтами. Иногда движущая сила создается комбинацией этих методов. Наиболее эффективно создание тяги с помощью воздушных винтов, однако вращающиеся винты на СВП представляют опасность и для пассажиров, и для команды. Режим торможения СВП, как и поворот без бокового заноса, обеспечиваются поворотом потока тяговых устройств. Для улучшения путевой устойчивости ставят вертикальные стабилизаторы , как у самолетов. Высота подъема регулируется основными вентиляторами. Трудности. Основными проблемами СВП, которые нужно решить , являются: уменьшение мощности , затрачиваемой на висение; улучшение соотношения между высотой висения и размерами судна; совершенствование управления при движении. Для решения первой проблемы требуется подробный аэродинамический расчет конструкции и тщательное проектирование подъемных вентиляторов и внутренних воздуховодов. Для решения второй проблемы необходимо надежное знание полей течения между днищем и опорной поверхностью земли или воды. Для решения последней проблемы нужно оптимизировать интегральную аэродинамику СВП и его двигателя.

Узнайте лексическое, прямое, переносное значение следующих слов:



Прикладные словари

Справочные словари

Толковые словари

Жаргонные словари

Гуманитарные словари

Технические словари