Что такое ракетное оружие: технические особенности? Значение ракетное оружие: технические особенности в энциклопедии Кольера

ракетное оружие: технические особенности - К статье РАКЕТНОЕ ОРУЖИЕ

Существует множество различных типов боевых ракет, однако для любого из них характерно использование новейших технологий в области управления и наведения, двигателей, боеголовок, создания электронных помех и пр.

Наведение. Если ракета запущена и не теряет в полете устойчивости, необходимо еще вывести ее на цель. Разработаны различные типы систем наведения.

Инерциальное наведение. Для первых баллистических ракет считалось приемлемым, если инерциальная система выводила ракету в точку, располагающуюся в нескольких километрах от цели: при полезном грузе в виде ядерного заряда уничтожение цели в этом случае вполне возможно. Однако это заставило обе стороны дополнительно защитить наиболее важные объекты, располагая их в укрытиях или бетонных шахтах. В свою очередь конструкторы ракет усовершенствовали инерциальные системы наведения, обеспечив корректировку траектории ракеты средствами астронавигации и отслеживания земного горизонта. Существенную роль сыграли и достижения в гироскопии. К 1980-м годам погрешность наведения межконтинентальных баллистических ракет составляла менее 1 км. См. также ИНЕРЦИАЛЬНАЯ НАВИГАЦИЯ
.

Самонаведение. Для большинства ракет, несущих обычные взрывчатые вещества, необходима та или иная система самонаведения. При активном самонаведении ракета снабжается собственным радиолокатором и электронным оборудованием, которое ведет ее до встречи с целью.

При полуактивном самонаведении цель облучается радиолокатором, расположенным на стартовой площадке или вблизи нее. Ракета наводится по сигналу, отраженному от цели. Полуактивное самонаведение сохраняет на стартовой площадке много дорогостоящего оборудования, однако дает оператору возможность контроля за выбором цели.

Лазерные целеуказатели, которые стали использоваться с начала 1970-х годов, во вьетнамской войне доказали свою высокую эффективность: они уменьшили время, в течение которого летный экипаж остается доступным вражескому огню, и количество ракет, необходимых для поражения цели. Система наведения такой ракеты фактически не воспринимает какого-либо излучения, кроме испускаемого лазером. Поскольку рассеяние лазерного луча невелико, он может облучать область, не превышающую габаритов цели.

Пассивное самонаведение сводится к обнаружению излучения, которое испускается или отражается целью, с последующим вычислением курса, выводящего ракету на цель. Это могут быть радиолокационные сигналы, излучаемые системами ПВО противника, свет и тепловое излучение двигателей самолета или другого объекта.

Связь по проводам и оптоволоконная связь. Используемая обычно методика управления основывается на проводной или оптоволоконной связи ракеты с пусковой платформой. Такая связь снижает стоимость ракеты, поскольку наиболее дорогостоящие компоненты остаются в пусковом комплексе и могут использоваться многократно. В ракете сохраняется лишь небольшой управляющий блок, который необходим для обеспечения устойчивости начального движения ракеты, стартующей с пускового устройства.

Двигатели. Движение боевых ракет обеспечивается, как правило, ракетными двигателями твердого топлива(РДТТ); в некоторых ракетах используется жидкое топливо, а для крылатых ракет предпочтительны реактивные двигатели. Ракетный двигатель автономен, и его работа не связана с поступлением воздуха извне (как работа поршневых или реактивных двигателей). Горючее и окислитель твердого топлива измельчены до порошкообразного состояния и смешаны с жидким связующим. Смесь заливается в корпус двигателя и отверждается. После этого не нужно никаких приготовлений для приведения двигателя в действие в боевых условиях. Хотя большинство тактических управляемых ракет действует в атмосфере, они снабжаются ракетными, а не реактивными двигателями, так как твердотопливные ракетные двигатели быстрее подготавливаются к пуску, почти не имеют движущихся частей и энергетически более эффективны. Реактивные двигатели используются в управляемых снарядах с длительным временем активного полета, когда использование атмосферного воздуха дает существенный выигрыш. Жидкостные ракетные двигатели (ЖРД) широко использовались в 1950-1960-х годах.

Совершенствование технологии изготовления твердого топлива позволило приступить к производству РДТТ с контролируемыми характеристиками горения, исключающими образование трещин в заряде, которые могли бы привести к аварии. Ракетные двигатели, особенно твердотопливные, стареют по мере того, как входящие в них вещества постепенно вступают в химические связи и изменяют состав, поэтому следует периодически проводить контрольные огневые испытания. Если не подтверждается принятый срок годности какого-либо из испытываемых образцов, заменяется вся партия.

Боеголовка. При использовании осколочных боеголовок в момент взрыва на цель направляются металлические осколки (обычно тысячи стальных или вольфрамовых кубиков). Такая шрапнель наиболее эффективна при поражении самолетов, средств связи, радиолокаторов ПВО и людей, находящихся вне укрытия. Боеголовка приводится в действие взрывателем, который детонирует при поражении цели или на некотором расстоянии от нее. В последнем случае, при так называемом неконтактном инициировании, срабатывание взрывателя происходит, когда сигнал от цели (отраженный радиолокационный луч, тепловое излучение либо сигнал от небольших бортовых лазеров или светочувствительных датчиков) достигает некоторого порога.

Для поражения танков и бронемашин, укрывающих солдат, применяются кумулятивные заряды, обеспечивающие самоорганизующееся формирование направленного движения осколков боеголовки. См. также БАЛЛИСТИКА
.

Достижения в области систем наведения позволили конструкторам создать кинетическое оружие - ракеты, поражающее действие которых определяется чрезвычайно большой скоростью движения, которая при ударе приводит к выделению огромной кинетической энергии. Такие ракеты обычно используются для противоракетной обороны.

Электронные помехи. Применение боевых ракет тесно связано с созданием электронных помех и средств борьбы с ними. Целью таких помех является создание сигналов или шума, которые "обманут" ракету и заставят ее следовать за ложной целью. Ранние способы создания электронных помех сводились к выбросу ленточек алюминиевой фольги. На экранах локаторов присутствие ленточек превращается в визуальное отображение шума. Современные системы создания электронных помех анализируют принятые радиолокационные сигналы и передают ложные, чтобы ввести противника в заблуждение, или просто генерируют радиочастотные помехи, достаточные для того, чтобы заглушить систему противника. Важной частью военной электроники стали компьютеры. Неэлектронные помехи включают в себя создание вспышек, т.е. ложных целей для ракет противника с тепловым наведением, а также специально спроектированных реактивных турбин, смешивающих атмосферный воздух с выхлопными газами для снижения инфракрасной "заметности" самолета.

Системы борьбы с электронными помехами используют такие приемы, как изменение рабочих частот и применение поляризованных электромагнитных волн.

Заблаговременные сборка и испытание. Требование минимального обслуживания и высокой боеготовности ракетного оружия привели к разработке т.н. "сертифицированных" ракет. Собранные и проверенные ракеты герметизируются на заводе в контейнере и после этого поступают на склад, где они хранятся, пока не будут затребованы воинскими частями. При этом становится излишней сборка в полевых условиях (практиковавшаяся для первых ракет), а электронное оборудование не требует проверок и устранения неисправностей.

ракетное оружие: технические особенности

К статье РАКЕТНОЕ ОРУЖИЕ Существует множество различных типов боевых ракет, однако для любого из них характерно использование новейших технологий в области управления и наведения, двигателей, боеголовок, создания электронных помех и пр. Наведение. Если ракета запущена и не теряет в полете устойчивости, необходимо еще вывести ее на цель. Раз работа ны различные типы систем наведения. Инерциальное наведение . Для первых баллистических ракет считалось приемлемым, если инерциальная система выводила ракету в точку, располагающуюся в нескольких километрах от цели: при полезном грузе в виде ядерного заряда уничтожение цели в этом с луча е вполне возможно . Однако это заставило обе стороны дополнительно защитить наи более важные объекты, располагая их в укрытиях или бетонных шахтах. В свою очередь конструкторы ракет усовершенствовали инерциальные системы наведения, обеспечив корректировку траектории ракеты средствами астронавигации и отслеживания зе много горизонта. Существенную роль сыграли и достижения в гироскопии. К 1980-м годам погрешность наведения межконтинентальных баллистических ракет состав ляла менее 1 км. См. также ИНЕРЦИАЛЬНАЯ НАВИГАЦИЯ . Самонаведение. Для большинства ракет, несущих обычные взрывчатые вещества, необходима та или иная система самонаведения. При активном самонаведении ракета снабжается собственным радиолокатором и электронным оборудование м, которое ведет ее до встречи с целью. При полуактивном самонаведении цель облучается радиолокатором, расположенным на стартовой площадке или вблизи нее. Ракета наводится по сигнал у, отраженному от цели. Полуактивное самонаведение сохраняет на стартовой площадке много дорогостоящего оборудования, однако дает оператору возможность контроля за выбором цели. Лазерные целеуказатели, которые стали использоваться с начала 1970-х годов, во вьетнамской войне доказали свою высокую эффективность : они уменьшили время , в течение которого летный экипаж остается доступным вражескому огню, и количество ракет, необходимых для поражения цели. Система наведения такой ракеты фактически не воспринимает какого- либо излучения, кроме испускаемого лазером. Поскольку рассеяние лазерного луча невелико, он может облучать область , не превышающую габаритов цели. Пассивное самонаведение сводится к обнаружению излучения, которое испускается или отражается целью, с последующим вычислением курса , выводящего ракету на цель. Это могут быть радиолокационные сигналы, излучаемые системами ПВО противника, свет и тепловое излучение двигателей самолета или другого объекта. Связь по проводам и оптоволоконная связь. Используемая обычно методика управления основывается на проводной или оптоволоконной связи ракеты с пусковой платформой. Такая связь снижает стоимость ракеты, поскольку наиболее дорогостоящие компоненты остаются в пусковом комплексе и могут использоваться многократно . В ракете сохраняется лишь не большой управляющий блок , который необходим для обеспечения устойчивости начального движения ракеты, стартующей с пускового устройства. Двигатели . Движение боевых ракет обеспечивается, как правило , ракетными двигателями твердого топлива(РДТТ); в некоторых ракетах используется жидкое топливо , а для крылатых ракет пред почти тельны реактивные двигатели. Ракетный двигатель автономен, и его работа не связана с поступлением воздух а извне (как работа поршневых или реактивных двигателей). Горючее и окислитель твердого топлива измельчены до порошкообразного состояния и смешаны с жидким связующим. Смесь заливается в корпус двигателя и отверждается. После э того не нужно никаких приготовлений для приведения двигателя в действие в боевых условиях. Хотя большинство тактических управляемых ракет действует в атмосфере, они снабжаются ракетными, а не реактивными двигателями, так как твердотопливные ракетные двигатели быстрее подготавливаются к пуску, почти не имеют движущихся частей и энергетически более эффективны. Реактивные двигатели используются в управляемых снарядах с длительным временем активного полета, когда использование атмосферного воздуха дает существенный выигрыш . Жидкостные ракетные двигатели (ЖРД) широко использовались в 1950-1960-х годах. Совершенствование технологии изготовления твердого топлива позволило приступить к производству РДТТ с контролируемыми характеристиками горения, исключающими образование трещин в заряде, которые могли бы привести к аварии. Ракетные двигатели, особенно твердотопливные, стареют по мере того, как входящие в них вещества постепенно вступают в химические связи и изменяют состав, поэтому следует периодически проводить контрольные огневые испытания. Если не подтверждается принятый срок годности какого-либо из испытываемых образцов , заменяется вся партия. Боеголовка . При использовании осколочных боеголовок в момент взрыва на цель направляются металлические осколки (обычно тысячи стальных или вольфрамовых кубиков). Такая шрапнель наиболее эффективна при поражении самолетов , средств связи, радиолокаторов ПВО и людей, находящихся вне укрытия. Боеголовка приводится в действие взрывателем, который детонирует при поражении цели или на некотором расстоянии от нее. В последнем случае, при так называемом неконтактном инициировании, срабатывание взрывателя происходит, когда сигнал от цели ( отраженный радиолокационный луч, тепловое излучение либо сигнал от небольших бортовых лазеров или светочувствительных датчиков) достигает некоторого порога. Для поражения танков и бронемашин, укрывающих солдат , применяются кумулятивные заряды, обеспечивающие самоорганизующееся формирование направленного движения осколков боеголовки. См. также БАЛЛИСТИКА . Достижения в области систем наведения позволили конструкторам создать кинетическое оружие - ракеты, поражающее действие которых определяется чрезвычайно большой скоростью движения, которая при ударе приводит к выделению огромной кинетической энергии. Такие ракеты обычно используются для противоракетной обороны. Электронные помехи. Применение боевых ракет тесно связано с создание м электронных помех и средств борьбы с ними . Цель ю таких помех является создание сигналов или шума, которые "обманут" ракету и заставят ее следовать за ложной целью. Ранние способы создания электронных помех сводились к выбросу ленточек алюминиевой фольги. На экранах локаторов присутствие ленточек превращается в визуальное отображение шума. Современные системы создания электронных помех анализируют принятые радиолокационные сигналы и передают ложные, чтобы ввести противника в заблуждение , или просто генерируют радиочастотные помехи, достаточные для того, чтобы заглушить систему противника. Важной частью военной электроники стали компьютеры. Неэлектронные помехи включают в себя создание вспышек, т.е. ложных целей для ракет противника с тепловым наведением, а также специально спроектированных реактивных турбин , смешивающих атмосферный воздух с выхлопными газами для снижения инфракрасной "заметности" самолета. Системы борьбы с электронными помехами используют такие приемы, как изменение рабочих частот и применение поляризованных электромагнитных волн. Заблаговременные сборка и испытание . Требование минимального обслуживания и высокой боеготовности ракетного оружия привели к разработке т.н. "сертифицированных" ракет. Собранные и проверенные ракеты герметизируются на заводе в контейнере и после этого поступают на склад , где они хранятся, пока не будут затребованы воинскими частями. При этом становится излишней сборка в полевых условиях (практиковавшаяся для первых ракет), а электронное оборудование не требует проверок и устранения неисправностей.

Узнайте лексическое, прямое, переносное значение следующих слов:

  • растворы - д. твердые вещества - К статье РАСТВОРЫ Все твердые вещества проявляют ограниченную растворимость ...
  • растворы - в. газы - К статье РАСТВОРЫ В отсутствие химического взаимодействия газы смешиваются ...
  • растворы - а. основные понятия - К статье РАСТВОРЫ Два вещества, растворяющиеся друг в друге ...
  • рассеянный склероз - хроническое заболевание центральной нервной системы с непредсказуемым, часто ...
  • распятие - изображение Христа, распятого на кресте. До 4 в., когда ...
  • распев - форма вокальной музыки, нечто среднее между обычной речью ...
  • раннехристианское искусство - охватывает произведения живописи, скульптуры и декоративноприкладного искусства, созданные ...
  • рак: профилактика - К статье РАК Как уже отмечалось, возникновение рака в ...
  • рак: лечение - К статье РАК Уже многие годы основным методом лечения ...
  • рак: выявляемые самим больным - К статье РАК Место поражения Ранние симптомы Молочная железа Уплотнения. Неравномерность контуров ...
  • рак толстого кишечника - Среди причин смерти от онкологических заболеваний рак ободочной ...
  • рак кости - первичная или вторичная (метастатическая) злокачественная опухоль, поражающая скелетную ...
  • райт, франк ллойд - (Wright, Frank Lloyd) (18671959), американский архитектор, основоположник т.н. ...
  • райт - (Wright), братья Орвилл (Orville) (18711948) и Уилбер (Wilbur) ...
  • генрих v - I (Heinrich V) (10861125), германский король и император Священной ...


Прикладные словари

Справочные словари

Толковые словари

Жаргонные словари

Гуманитарные словари

Технические словари