Что такое операционное исчисление? Значение операционное исчисление в энциклопедии Кольера

операционное исчисление -

раздел математики, занимающийся главным образом алгебраическими операциями, производимыми над символами операции (или преобразования).

Теория операторов. Во многих задачах математического анализа рассматриваются ситуации, в которых каждая точка одного пространства ставится в соответствие некоторой точке другого (или того же) пространства. Пространства могут быть абстрактными, в которых "точки" в действительности являются функциями. Соответствие между двумя точками устанавливается с помощью преобразования или оператора. В задачу теории операторов входит подробное описание и классификация различных видов преобразований и их свойств, а также разработка символических методов, позволяющих минимизировать и упростить вычисления. Обычно теорию операторов применяют к пространствам, в которых допускается сложение или умножение точек, т.е. линейным пространствам, группам, кольцам, полям и т.д. См. также АЛГЕБРА АБСТРАКТНАЯ
.

Проблемы и приложения. Пусть D и R - действительные линейные или векторные пространства, необязательно различные. Их элементами являются векторы, поэтому сумма двух элементов и произведение элемента на скаляр определены и удовлетворяют обычным условиям, предъявляемым к векторам. Существование конечных базисов в D и R необязательно. Пусть r, вектор из R, соответствует вектору d из D. Обозначим это соответствие T(d) = r или Td = r. Тогда T называется оператором с областью определения D и областью значений R. Оператор T является дистрибутивным, если

где . и ?. - любые действительные числа, а d и d. - любые элементы из D. Если D и R - топологические векторные пространства, в которых ?d и d + d. - непрерывные операции, то дистрибутивный непрерывный оператор называется линейным оператором. Если Q содержит D и R, то T2(d) определяется как T(T(d)) и аналогичным образом определяется Tn(d), если все эти операции имеют смысл.

Операционное исчисление позволяет осуществить абстрактные постановки задач и обобщить такие разделы математического анализа, как теория дифференциальных и интегральных уравнений. Мощным стимулом для развития теории операторов стали современные проблемы квантовой теории. Наиболее полные результаты получены для дистрибутивных операторов в т.н. гильбертовом пространстве. Интерес к этой области во многом связан с представлением таких операторов интегральными преобразованиями.

Двумя важными дистрибутивными операторами являются операторы дифференцирования p и интегрирования p-1. Элементами линейных пространств D и R в этом случае будут функции переменной x. Имеем

где m и n - неотрицательные целые числа. Так как интегрирование приводит к появлению произвольной постоянной, p-1p необязательно является тождественной операцией p0. Формальные правила комбинирования таких операторов восходят к Дж.Булю (1815-1864); например,

по теореме Тейлора (см. также КОНЕЧНЫЕ РАЗНОСТИ).

В исчислении Хевисайда, разработанном О.Хевисайдом (1850-1925), пространство D ограничено областью определения функций f (x), тождественно равных нулю при отрицательных x. Главную роль играет функция 1(x), равная 0 при отрицательных x и 1 при неотрицательных x. Приведем некоторые "правила" исчисления Хевисайда:

Если n! заменить гамма-функцией Г(n + 1), то первое из правил останется в силе и при нецелых n (определение гамма-функции см. ФУНКЦИЯ).

Основным результатом операционного исчисления принято считать теорему о композиции, или свертке, согласно которой, если F1(p)1(x) = f1(x) и F2(p)1(x) = f2(x), то

Применяя теорему о свертке к p. при ??. 0, -1, -2,..., можно определить интегрирование или дифференцирование дробного порядка. Например, рассмотрим выражение

где функция y(x) и ее первые n - 1 производных обращаются в нуль при x = 0. Пусть y(x) = Y(p)1(x), g(x) = G(p)1(x). Примем

Предположим, что . (x) = F(p)-11(x). Тогда

Стандартные правила включают в себя различные алгоритмы, связанные с разложениями на элементарные дроби рациональных функций асимптотических рядов и т.д. На практике y(x) = Y(p)1(x) часто записывают в виде y(x) Y(p) или .

К тем же общим результатам приводит и теория функций замкнутого цикла В.Вольтерры (1860-1940). Близкие теории были построены для других операторов, например для x(d/dx) и для более общих ситуаций с несколькими операциями, Вольтеррой, Пинкерле и др. Для прикладных математиков основное преимущество операционного исчисления Хевисайда заключается в сведении трансцендентных задач с независимой переменной x к алгебраическим задачам для функций, зависящих от p. Чаще всего метод Хевисайда применяется при решении дифференциальных уравнений с постоянными коэффициентами, разностных уравнений и интегральных уравнений с ядром K(x, t) = K(x - t). В общем случае при распространении методов операционного исчисления на более сложные уравнения теряется характер "чистой алгебраизации".

Строгое обоснование соотношения F(p)1(x) = f (x) было дано с помощью интегральных преобразований Лапласа или Фурье, или абстрактно, в терминах операторов в некоторых линейных топологических пространствах, таких, как гильбертово пространство. Такой подход позволил установить условия применимости эвристических правил.

операционное исчисление

раздел математики, занимающийся главным образом алгебра ическими операциями, производимыми над символами операции (или преобразования). Теория операторов. Во многих задачах математического анализа рассматриваются ситуации, в которых каждая точка одного пространства ставится в соответствие некоторой точке другого (или того же) пространства. Пространства могут быть абстрактными, в которых "точки" в действительности являются функция ми. Соответствие между двумя точками устанавливается с помощью преобразования или оператора. В задачу теории операторов входит подробное описание и классификация различных видов преобразований и их свойств, а также разработка символических метод ов, позволяющих минимизировать и упростить вычисления. Обычно теорию операторов применяют к пространствам, в которых допускается сложение или умножение точек , т.е. линейным пространствам, группам, кольцам, полям и т.д. См. также АЛГЕБРА АБСТРАКТНАЯ . Проблемы и приложения. Пусть D и R - действительные линейные или вектор ные пространства, необязательно различные. Их элементами являются векторы, по этом у сумма двух элементов и произведение элемента на скаляр определены и удовлетворяют обычным условия м, предъявляемым к векторам. Существование конечных базисов в D и R необязательно. Пусть r, вектор из R, соответствует вектору d из D. Обозначим это соответствие T(d) = r или Td = r. Тогда T называется оператором с областью определения D и областью значений R. Оператор T является дистрибутивным, если где . и ?. - любые действительные числа , а d и d. - любые элементы из D. Если D и R - топологические векторные пространства, в которых ?d и d + d. - непрерывные операции, то дистрибутивный непрерывный оператор называется линейным оператором. Если Q содержит D и R, то T2(d) определяется как T(T(d)) и аналогичным образом определяется Tn(d), если все эти операции имеют смысл. Операционное исчисление позволяет осуществить абстрактные постановки задач и обобщить такие разделы математического анализа, как теория дифференциальных и интегральных уравнений. Мощным стимулом для развития теории операторов стали современные проблемы квантовой теории. Наи более полные результаты получены для дистрибутивных операторов в т.н. гильбертовом пространстве. Интерес к этой области во многом связан с представлением таких операторов интегральными преобразованиями. Двумя важными дистрибутивными операторами являются операторы дифференцирования p и интегрирования p-1. Элементами линейных пространств D и R в этом случае будут функции переменной x. Имеем где m и n - неотрицательные целые числа. Так как интегрирование приводит к появлению произвольной постоянной, p-1p необязательно является тождественной операцией p0. Формальные правила комбинирования таких операторов восходят к Дж.Булю (1815-1864); например, по теореме Тейлора (см. также КОНЕЧНЫЕ РАЗНОСТИ). В исчислении Хевисайда, разработанном О.Хевисайдом (1850-1925), пространство D ограничено областью определения функций f (x), тождественно равных нулю при отрицательных x. Главную роль играет функция 1(x), равная 0 при отрицательных x и 1 при неотрицательных x. Приведем некоторые "правила" исчисления Хевисайда: Если n! заменить гамма-функцией Г(n + 1), то первое из правил останется в силе и при нецелых n ( определение гамма-функции см. ФУНКЦИЯ). Основным результатом операционного исчисления принято считать теорему о композиции, или свертке, согласно которой, если F1(p)1(x) = f1(x) и F2(p)1(x) = f2(x), то Применяя теорему о свертке к p. при ??. 0, -1, -2,..., можно определить интегрирование или дифференцирование дробного порядка. Например , рассмотрим выражение где функция y(x) и ее первые n - 1 производных обращаются в нуль при x = 0. Пусть y(x) = Y(p)1(x), g(x) = G(p)1(x). Примем Предположим, что . (x) = F(p)-11(x). Тогда Стандартные правила включают в себя различные алгоритмы, связанные с разложениями на элементарные дроби рациональных функций асимптотических рядов и т.д. На практике y(x) = Y(p)1(x) часто записывают в виде y(x) Y(p) или . К тем же общим результатам приводит и теория функций замкнутого цикла В.Вольтерры (1860-1940). Близкие теории были построены для других операторов, например для x(d/dx) и для более общих ситуаций с несколькими операциями, Вольтеррой, Пинкерле и др. Для прикладных математиков основное преимущество операционного исчисления Хевисайда заключается в сведении трансцендентных задач с независимой переменной x к алгебраическим задачам для функций, зависящих от p. Чаще всего метод Хевисайда применяется при решении дифференциальных уравнений с постоянными коэффициентами, разностных уравнений и интегральных уравнений с ядром K(x, t) = K(x - t). В общем случае при распространении методов операционного исчисления на более сложные уравнения теряется характер "чистой алгебраизации". Строгое обоснование соотношения F(p)1(x) = f (x) было дано с помощью интегральных преобразований Лапласа или Фурье , или абстрактно, в терминах операторов в некоторых линейных топологических пространствах, таких, как гильбертово пространство. Такой подход позволил установить условия применимости эвристических правил.

Однокоренные и похожие слова:

операции операции арбитражные с опционом операции агентские операции аутрайт операции банков доверительные операции банков комиссионные операции банков пассивные операции банков посреднические операции банков розничные операции банков товарные операции банков фондовые операции банковские операции банковские активные операции банковские двусторонние операции биржевые операции биржевые товарные операции биржевые фондовые операции бондовые операции валютные операции валютные арбитражные операции валютные аутрайт операции валютные внешнеэкономические операции валютные депозитные операции валютные конверсионные операции валютные своп операции валютные спот операции валютные текущие операции венчурные операции внепроизводственные операции внерыночные операции внутренние операции встречные арбитражные операции деловые операции депозитарные операции депозитные операции интервенционные операции кассовые операции комиссионные операции коммерческие операции конверсионные операция операция технологическая чувал

Значение слова операционное исчисление в других словарях:

Узнайте лексическое, прямое, переносное значение следующих слов:



Прикладные словари

Справочные словари

Толковые словари

Жаргонные словари

Гуманитарные словари

Технические словари