Что такое фотохимия: применения? Значение фотохимия: применения в энциклопедии Кольера

фотохимия: применения - К статье ФОТОХИМИЯ

Фотография и получение фотоизображений. Фотография - это способ получения видимого изображения объектов с помощью света. Техника получения фотоизображений широко применяется при ксерокопировании, изготовлении печатных плат, интегральных схем и коммутаторов на печатных схемах, а также различных деталей, например сеток электробритв и затворов фото- и кинокамер. Во многих случаях при этом используются фоторезисты - материалы, свойства которых изменяются под действием света. Так, на свету может меняться растворимость материала, нанесенного на поверхность, где хотят получить изображение. В качестве светочувствительного вещества в фотографии обычно применяют галогениды серебра, равномерно распределенные в виде микрокристаллов (зерен) в водном растворе защитного коллоида (обычно желатины), нанесенного на подложку. При небольших экспозициях формируется скрытое изображение, которое "проявляется" в присутствии восстановителя. При этом атомы серебра, по-видимому, катализируют процесс восстановления. Для увеличения чувствительности фотоэмульсий в широком диапазоне - от УФ- и коротковолновой области видимого спектра до его красной границы - применяют красители. Их сенсибилизирующий эффект определяется переносом полученной энергии на галогениды серебра. В бльших количествах красители используются в цветной фотографии; здесь они непосредственно участвуют в формировании изображения.

Фотополимеризация. С помощью фотохимических процессов можно инициировать термическую полимеризацию. Наиболее важные практические применения этого метода связаны с получением in situ тонких полимерных пленок. Процессы фотоотверждения применяют для получения изображений на различных поверхностях, для быстрого контролируемого отверждения пломбировочных материалов. Фотохимические превращения используются также для поперечного сшивания полимерных цепей; такие сшитые полимеры обычно не растворяются ни в каких растворителях. Фотохимические методы применяют для увеличения долговечности полимеров. Многие органические полимеры разлагаются под действием видимого и УФ-света, особенно в присутствии кислорода, и чтобы замедлить этот процесс, в них вводят фотостабилизаторы. В некоторых случаях (например, при производстве пластиковой посуды), напротив, применяют светочувствительные полимеры, чтобы вышедшие из употребления изделия легче разлагались на свету.

Фотохимическое преобразование энергии и ее накопление. Все попытки использования солнечной энергии сводились либо к ее прямому преобразованию в электрическую, либо к накоплению с целью последующего высвобождения. Чтобы фотохимическое преобразование энергии могло иметь практическую ценность, необходимо либо использовать дешевые и легкодоступные материалы, либо разработать замкнутую технологию с регенерацией веществ - переносчиков энергии. В качестве одного из способов накопления энергии предлагалось использовать реакцию фотоизомеризации органических молекул с переходом их из низкоэнергетического состояния в высокоэнергетическое. Большинство методов преобразования солнечной энергии основано на использовании окислительно-восстановительных систем, чаще всего таких, в которых протекают фотоэлектрохимические процессы. В фотогальванических элементах применяют облучение электролитов, а в фотоэлектрических системах с запирающим слоем - облучение электродов. Еще одним примером использования солнечной энергии является фотоэлектролиз.

Синтез органических соединений. С помощью фотохимии можно осуществлять промышленный синтез веществ, которые сложно или просто невозможно получить с помощью обычных "тепловых" химических реакций. Что касается тонкого химического синтеза, то использование света совсем немного удорожает производство, при этом не существует никаких особых ограничений на применение фотохимических процессов. В качестве продуктов тонкого органического синтеза можно привести витамин D3 (добавляемый в пищу животным), простагландины (гормоны, применяющиеся в химиотерапии), оксиды розового масла (используемые в парфюмерии). Крупнотоннажное химическое производство предъявляет повышенные требования к эффективности фотохимических процессов, поскольку энергетические расходы здесь могут составлять значительную часть его полной стоимости. По-видимому, наиболее эффективными являются при этом цепные фотохимические реакции. Фотохимическая технология применяется в крупнотоннажном производстве ?-гексахлорциклогексана (гаммексана, или линдана, ценного инсектицида), алкансульфонатов (поверхностно-активных добавок и эмульгаторов), капролактама (одного из предшественников найлона).

Импульсный фотолиз (флеш-фотолиз). Импульсный фотолиз оказался исключительно плодотворным методом исследования фотохимических процессов. За его разработку в 1950 английские физикохимики Р.Норриш и Дж.Портер получили позднее (совместно с М.Эйгеном) Нобелевскую премию (1967). Метод основан на облучении фотохимической системы мощным коротким импульсом света с последующим анализом состава реакционной смеси в течение короткого временного интервала. Во многих случаях для идентификации исходных, промежуточных и конечных продуктов используются спектроскопические методы. При большой интенсивности света удается получать промежуточные продукты в высоких концентрациях и сохранять достаточно длительное время высокоактивные соединения с целью их исследования. Вначале в качестве импульсных источников света использовали фотовспышки и исследовали процессы, протекавшие за время порядка 10-3-10-6 с. Это позволило идентифицировать промежуточные продукты - атомы, свободные радикалы и вещества в возбужденном состоянии, - существование которых ранее только предполагалось. Новым стимулом к развитию данного метода стало создание импульсных лазеров. У исследователей появился сверхмощный источник импульсного излучения с фиксированной длиной волны. Сейчас удается исследовать процессы, протекающие за время порядка фемтосекунд (10-15 с), и изучать не только промежуточные продукты фотохимических реакций, но и начальные их стадии, например проследить за диссоциацией молекулы или за инициацией в хлоропласте процесса фотосинтеза. См. также ХИМИЯ АНАЛИТИЧЕСКАЯ; ЭЛЕКТРОХИМИЯ.

фотохимия: применения

К статье ФОТОХИМИЯ Фотография и получение фотоизображений. Фотография - это способ получения видимого изображения объектов с помощью света. Техника получения фотоизображений широко применяется при ксерокопировании, изготовлении печатных плат , интегральных схем и коммутаторов на печатных схемах, а также различных деталей, например сеток электробритв и затворов фото- и кинокамер. Во многих случаях при этом используются фоторезисты - материалы , свойства которых изменяются под действием света. Так, на свету может меняться растворимость материала, нанесенного на поверхность , где хотят получить изображение . В качестве светочувствительного вещества в фотографии обычно применяют галогениды серебра, равномерно распределенные в виде микрокристаллов ( зерен ) в водном растворе защитного коллоида (обычно желатины), нанесенного на подложку. При небольших экспозициях формируется скрытое изображение, которое "проявляется" в присутствии восстановителя. При этом атомы серебра, по-видимому , катализируют процесс восстановления. Для увеличения чувствительности фотоэмульсий в широком диапазоне - от УФ- и коротковолновой области видимого спектра до его красной границы - применяют красители . Их сенсибилизирующий эффект определяется переносом полученной энергии на галогениды серебра. В бльших количествах красители используются в цветной фотографии; здесь они непосредственно участвуют в формировании изображения. Фотополимеризация. С помощью фотохимических процессов можно инициировать термическую полимеризацию. Наиболее важные практические применения этого метода связаны с получением in situ тонких полимерных пленок. Процесс ы фотоотверждения применяют для получения изображений на различных поверхностях, для быстрого контролируемого отверждения пломбировочных материалов. Фотохимические превращения используются также для поперечного сшивания полимерных цепей; такие сшитые полимеры обычно не растворяются ни в каких растворителях. Фотохимические методы применяют для увеличения долговечности полимеров. Многие органические полимеры разлагаются под действием видимого и УФ-света, особенно в присутствии кислорода, и чтобы замедлить этот процесс, в них вводят фотостабилизаторы. В некоторых случаях (например, при производстве пластиковой посуды), напротив , применяют светочувствительные полимеры, чтобы вышедшие из употребления изделия легче разлагались на свету. Фотохимическое преобразование энергии и ее накопление . Все попытки использования солнечной энергии сводились либо к ее прямому преобразованию в электрическую, либо к накоплению с целью последующего высвобождения. Чтобы фотохимическое преобразование энергии могло иметь практическую ценность , необходимо либо использовать дешевые и легкодоступные материалы, либо разработать замкнутую технологию с регенерацией веществ - переносчиков энергии. В качестве одного из способов накопления энергии предлагалось использовать реакцию фотоизомеризации органических молекул с переходом их из низкоэнергетического состояния в высокоэнергетическое. Большинство методов преобразования солнечной энергии основано на использовании окислительно-восстановительных систем, чаще всего таких, в которых протекают фотоэлектрохимические процессы. В фотогальванических элементах применяют облучение электролитов, а в фотоэлектрических системах с запирающим слоем - облучение электродов. Еще одним примером использования солнечной энергии является фотоэлектролиз. Синтез органических соединений. С помощью фотохимии можно осуществлять промышленный синтез веществ, которые сложно или просто невозможно получить с помощью обычных "тепловых" химических реакций. Что касается тонкого химического синтеза, то использование света совсем немного удорожает производство , при этом не существует никаких особых ограничений на применение фотохимических процессов. В качестве продуктов тонкого органического синтеза можно привести витамин D3 (добавляемый в пищу животным), простагландины ( гормоны , применяющиеся в химиотерапии), оксиды розового масла (используемые в парфюмерии). Крупнотоннажное химическое производство предъявляет повышенные требования к эффективности фотохимических процессов, поскольку энергетические расходы здесь могут составлять значительную часть его полной стоимости. По-видимому, наиболее эффективными являются при этом цепные фотохимические реакции. Фотохимическая технология применяется в крупнотоннажном производстве ?-гексахлорциклогексана (гаммексана, или линдана, ценного инсектицида), алкансульфонатов (поверхностно-активных добавок и эмульгаторов), капролактама (одного из предшественников найлона). Импульсный фотолиз (флеш-фотолиз). Импульсный фотолиз оказался исключительно плодотворным методом исследования фотохимических процессов. За его разработку в 1950 английские физикохимики Р.Норриш и Дж.Портер получили позднее (совместно с М.Эйгеном) Нобелевскую премию (1967). Метод основан на облучении фотохимической системы мощным коротким импульсом света с последующим анализом состава реакционной смеси в течение короткого временного интервала. Во многих случаях для идентификации исходных, промежуточных и конечных продуктов используются спектроскопические методы. При большой интенсивности света удается получать промежуточные продукты в высоких концентрациях и сохранять достаточно длительное время высокоактивные соединения с целью их исследования. Вначале в качестве импульсных источник ов света использовали фотовспышки и исследовали процессы, протекавшие за время порядка 10-3-10-6 с. Это позволило идентифицировать промежуточные продукты - атомы, свободные радикалы и вещества в возбужденном состоянии, - существование которых ранее только предполагалось. Новым стимулом к развитию данного метода стало создание импульсных лазеров. У исследователей появился сверхмощный источник импульсного излучения с фиксированной длиной волны . Сейчас удается исследовать процессы, протекающие за время порядка фемтосекунд (10-15 с), и изучать не только промежуточные продукты фотохимических реакций, но и начальные их стадии, например проследить за диссоциацией молекулы или за инициацией в хлоропласте процесса фотосинтеза. См. также ХИМИЯ АНАЛИТИЧЕСКАЯ; ЭЛЕКТРОХИМИЯ.

Узнайте лексическое, прямое, переносное значение следующих слов:



Прикладные словари

Справочные словари

Толковые словари

Жаргонные словари

Гуманитарные словари

Технические словари