Что такое электронный микроскоп: растровый электронный микроскоп? Значение электронный микроскоп: растровый электронный микроскоп в энциклопедии Кольера

электронный микроскоп: растровый электронный микроскоп - К статье ЭЛЕКТРОННЫЙ МИКРОСКОП

РЭМ, ставший важнейшим прибором для научных исследований, служит хорошим дополнением ОПЭМ. В РЭМ применяются электронные линзы для фокусировки электронного пучка в пятно очень малых размеров. Можно отрегулировать РЭМ так, чтобы диаметр пятна в нем не превышал 0,2 нм, но, как правило, он составляет единицы или десятки нанометров. Это пятно непрерывно обегает некоторый участок образца аналогично лучу, обегающему экран телевизионной трубки. Электрический сигнал, возникающий при бомбардировке объекта электронами пучка, используется для формирования изображения на экране телевизионного кинескопа или электронно-лучевой трубки (ЭЛТ), развертка которой синхронизирована с системой отклонения электронного пучка (рис. 3). Увеличение в данном случае понимается как отношение размера изображения на экране к размеру области, обегаемой пучком на образце. Это увеличение составляет от 10 до 10 млн.

Взаимодействие электронов сфокусированного пучка с атомами образца может приводить не только к их рассеянию, которое используется для получения изображения в ОПЭМ, но и к возбуждению рентгеновского излучения, испусканию видимого света и эмиссии вторичных электронов. Кроме того, поскольку в РЭМ перед образцом имеются только фокусирующие линзы, он позволяет исследовать "толстые" образцы.

Отражательный РЭМ. Отражательный РЭМ предназначен для исследования массивных образцов. Поскольку контраст, возникающий при регистрации отраженных, т.е. обратно-рассеянных, и вторичных электронов, связан в основном с углом падения электронов на образец, на изображении выявляется поверхностная структура. (Интенсивность обратного рассеяния и глубина, на которой оно происходит, зависят от энергии электронов падающего пучка. Эмиссия вторичных электронов определяется, в основном составом поверхности и электропроводностью образца.) Оба эти сигнала несут информацию об общих характеристиках образца. Благодаря малой сходимости электронного пучка можно проводить наблюдения с гораздо большей глубиной резкости, чем при работе со световым микроскопом, и получать прекрасные объемные микрофотографии поверхностей с весьма развитым рельефом. Регистрируя рентгеновское излучение, испускаемое образцом, можно в дополнение к данным о рельефе получать информацию о химическом составе образца в поверхностном слое глубиной 0,001 мм. О составе материала на поверхности можно судить и по измеренной энергии, с которой эмиттируются те или иные электроны.

Все сложности работы с РЭМ обусловлены, в основном, его системами регистрации и электронной визуализации. В приборе с полным комплексом детекторов, наряду со всеми функциями РЭМ, предусматривается рабочий режим электронно-зондового микроанализатора.

Растровый просвечивающий электронный микроскоп. Растровый просвечивающий электронный микроскоп (РПЭМ) - это особый вид РЭМ. Он рассчитан на тонкие образцы, такие же, как и исследуемые в ОПЭМ. Схема РПЭМ отличается от схемы на рис. 3 только тем, что в ней нет детекторов, расположенных выше образца. Поскольку изображение формируется бегущим пучком (а не пучком, освещающим весь исследуемый участок образца), требуется высокоинтенсивный источник электронов, чтобы изображение можно было зарегистрировать за приемлемое время. В РПЭМ высокого разрешения используются автоэлектронные эмиттеры высокой яркости. В таком источнике электронов создается очень сильное электрическое поле (ок. В/см) вблизи поверхности заостренной травлением вольфрамовой проволочки очень малого диаметра. Это поле буквально вытягивает миллиарды электронов из проволочки без всякого нагрева. Яркость такого источника почти в 10 000 раз больше, чем источника с нагреваемой вольфрамовой проволокой (см. выше), а испускаемые им электроны могут быть сфокусированы в пучок диаметром менее 1 нм. Были даже получены пучки, диаметр которых близок к 0,2 нм. Автоэлектронные источники могут работать только в условиях сверхвысокого вакуума (при давлениях ниже Па), в которых полностью отсутствуют такие загрязнения, как пары углеводородов и воды, и становится возможным получение изображений с высоким разрешением. Благодаря таким сверхчистым условиям можно исследовать процессы и явления, недоступные ЭМ с обычными вакуумными системами. Исследования в РПЭМ проводятся на сверхтонких образцах. Электроны проходят сквозь такие образцы почти без рассеяния. Электроны, рассеянные на углы более нескольких градусов без замедления, регистрируются, попадая на кольцевой электрод, расположенный под образцом (рис. 3). Сигнал, снимаемый с этого электрода, сильно зависит от атомного номера атомов в той области, через которую проходят электроны, - более тяжелые атомы рассеивают больше электронов в направлении детектора, чем легкие. Если электронный пучок сфокусирован в точку диаметром менее 0,5 нм, то можно получить изображение отдельных атомов. Реально удается различать на изображении, полученном в РПЭМ, отдельные атомы с атомной массой железа (т.е. 26 и более). Электроны, не претерпевшие рассеяния в образце, а также электроны, замедлившиеся в результате взаимодействия с образцом, проходят в отверстие кольцевого детектора. Энергетический анализатор, расположенный под этим детектором, позволяет отделить первые от вторых. Измеряя энергию, потерянную электронами при рассеянии, можно получить важную информацию об образце. Потери энергии, связанные с возбуждением рентгеновского излучения или выбиванием вторичных электронов из образца, позволяют судить о химических свойствах вещества в области, через которую проходит электронный пучок.

электронный микроскоп: растровый электронный микроскоп

К статье ЭЛЕКТРОННЫЙ МИКРОСКОП РЭМ, ставший важнейшим прибором для научных исследований, служит хорошим дополнение м ОПЭМ. В РЭМ применяются электронные линзы для фокусировки электронного пучка в пятно очень малых размеров. Можно отрегулировать РЭМ так, чтобы диаметр пятна в нем не превышал 0,2 нм, но, как правило , он составляет единицы или десятки нанометров. Это пятно непрерывно обегает некоторый участок образца аналогично лучу, обегающему экран телевизионной трубки. Электрический сигнал, возникающий при бомбардировке объекта электронами пучка, используется для формирования изображения на экране телевизионного кинескопа или электронно-лучевой трубки (ЭЛТ), развертка которой синхронизирована с системой отклонения электронного пучка (рис. 3). Увеличение в данном случае понимается как отношение размера изображения на экране к размеру области, обегаемой пучком на образце. Это увеличение составляет от 10 до 10 млн. Взаимодействие электронов сфокусированного пучка с атомами образца может приводить не только к их рассеянию, которое используется для получения изображения в ОПЭМ, но и к возбуждению рентгеновского излучения, испусканию видимого света и эмиссии вторичных электронов. Кроме того , поскольку в РЭМ перед образцом имеются только фокусирующие линзы, он позволяет исследовать "толстые" образцы. Отражательный РЭМ. Отражательный РЭМ предназначен для исследования массивных образцов . Поскольку контраст , возникающий при регистрации отраженных, т.е. обратно-рассеянных, и вторичных электронов, связан в основном с углом падения электронов на образец , на изображении выявляется поверхностная структура . ( Интенсивность обратного рассеяния и глубина , на которой оно происходит, зависят от энергии электронов падающего пучка. Эмиссия вторичных электронов определяется, в основном составом поверхности и электропроводностью образца.) Оба эти сигнала несут информацию об общих характеристиках образца. Благодаря малой сходимости электронного пучка можно проводить наблюдения с гораздо больше й глубиной резкости, чем при работе со световым микроскоп ом, и получать прекрасные объемные микрофотографии поверхностей с весь ма развитым рельефом. Регистрируя рентгеновское излучение , испускаемое образцом, можно в дополнение к данным о рельефе получать информацию о химическом составе образца в поверхностном слое глубиной 0,001 мм. О составе материала на поверхности можно судить и по измеренной энергии, с которой эмиттируются те или иные электроны. Все сложности работы с РЭМ обусловлены, в основном, его системами регистрации и электронной визуализации. В приборе с полным комплексом детекторов, наряду со всеми функциями РЭМ, предусматривается рабочий режим электронно-зондового микро анализатор а. Растровый просвечивающий электронный микроскоп. Растровый просвечивающий электронный микроскоп (РПЭМ) - это особый вид РЭМ. Он рассчитан на тонкие образцы, такие же, как и исследуемые в ОПЭМ. Схема РПЭМ отличается от схемы на рис. 3 только тем, что в ней нет детекторов, расположенных выше образца. Поскольку изображение формируется бегущим пучком (а не пучком, освещающим весь исследуемый участок образца), требуется высокоинтенсивный источник электронов, чтобы изображение можно было зарегистрировать за приемлемое время . В РПЭМ высокого разрешения используются автоэлектронные эмиттеры высокой яркости. В таком источнике электронов создается очень сильно е электрическое поле (ок. В/см) вблизи поверхности заостренной травлением вольфрамовой проволочки очень малого диаметра. Это поле буквально вытягивает миллиарды электронов из проволочки без всякого нагрева. Яркость такого источника почти в 10 000 раз больше, чем источника с нагреваемой вольфрамовой проволокой (см. выше), а испускаемые им электроны могут быть сфокусированы в пучок диаметром менее 1 нм. Были даже получены пучки, диаметр которых близок к 0,2 нм. Автоэлектронные источники могут работать только в условиях сверхвысокого вакуума (при давлениях ниже Па), в которых полностью отсутствуют такие загрязнения, как пары углеводородов и воды, и становится возможным получение изображений с высоким разрешением. Благодаря таким сверхчистым условиям можно исследовать процессы и явления , недоступные ЭМ с обычными вакуумными системами. Исследования в РПЭМ проводятся на сверхтонких образцах. Электроны проходят сквозь такие образцы почти без рассеяния. Электроны, рассеянные на углы более нескольких градусов без замедления, регистрируются, попадая на кольцевой электрод , расположенный под образцом (рис. 3). Сигнал , снимаемый с этого электрода, сильно зависит от атомного номера атомов в той области, через которую проходят электроны, - более тяжелые атомы рассеивают больше электронов в направлении детектора, чем легкие . Если электронный пучок сфокусирован в точку диаметром менее 0,5 нм, то можно получить изображение отдельных атомов. Реально удается различать на изображении, полученном в РПЭМ, отдельные атомы с атомной массой железа (т.е. 26 и более). Электроны, не претерпевшие рассеяния в образце, а также электроны, замедлившиеся в результате взаимодействия с образцом, проходят в отверстие кольцевого детектора. Энергетический анализатор, расположенный под этим детектором, позволяет отделить первые от вторых. Измеряя энергию, потерянную электронами при рассеянии, можно получить важную информацию об образце. Потери энергии, связанные с возбуждением рентгеновского излучения или выбиванием вторичных электронов из образца, позволяют судить о химических свойствах вещества в области, через которую проходит электронный пучок.

Однокоренные и похожие слова:

электр электра электро-генераторы: двигатель переменного тока с последовательным возбуждением электро-генераторы: синхронные генераторы переменного тока электро-генераторы: синхронные двигатели переменного тока электро... электрон электрон1 м. электрон2 м. электронная верстка полос электронная промышленность электронная пушка электронная ретушь электронная система платежей электронная торговля электронно- электронно-... электронное растрирование электронные деньги электронные средства связи электронные схемы электронные схемы: аналоговая схемотехника электронные схемы: цифровая схемотехника электронный электронный микроскоп электронный микроскоп: историческая справка электронный микроскоп: обычный просвечивающий электронный микроскоп электронный микроскоп: растровый туннельный микроскоп электронный микроскоп: техника электронной микроскопии электронный монтаж электронный1 прил. электронный2 прил. электроника электроника ж. электронщик

Узнайте лексическое, прямое, переносное значение следующих слов:



Прикладные словари

Справочные словари

Толковые словари

Жаргонные словари

Гуманитарные словари

Технические словари