Что такое электромашинные генераторы и электродвигатели: генераторы постоянного тока? Значение электромашинные генераторы и электродвигатели: генераторы постоянного тока в энциклопедии Кольера

электромашинные генераторы и электродвигатели: генераторы постоянного тока - К статье ЭЛЕКТРОМАШИННЫЕ ГЕНЕРАТОРЫ И ЭЛЕКТРОДВИГАТЕЛИ

Теория. На рис. 1,а показан виток провода abcd, вращающийся по часовой стрелке вокруг оси 00. в магнитном поле между северным (N) и южным (S) полюсами магнита. Направление мгновенной наведенной ЭДС показано стрелками ab и cd; величина и знак ЭДС для положений 1, 2, 3 и 4 приведены на графике рис. 1,б. Когда плоскость витка перпендикулярна полю (положения 1 и 3), ЭДС равна нулю; когда же плоскость витка параллельна полю (положения 2 и 4), ЭДС максимальна. Кроме того, направление ЭДС в боковых частях витка (скажем, ab), когда они проходят мимо северного полюса, противоположно ее направлению при прохождении мимо южного полюса. Поэтому ЭДС меняет знак через каждую половину оборота в точках 1 и 3, так что в витке генерируется переменная ЭДС и, стало быть, течет переменный ток. Если предусмотреть в конструкции токособирательные (контактные) кольца, то переменный ток пойдет во внешнюю цепь.

Конструкция. Генератор постоянного тока должен давать ток, который всегда течет в одном направлении. Для этого нужно переключать контакты внешней цепи в тот момент, когда ЭДС падает до нуля, прежде чем она начнет нарастать в другом направлении. Это делается с помощью коллектора, схематически изображенного на рис. 1,в. В показанном простейшем случае он представляет собой кольцо, разрезанное на две части по диаметру. Один конец витка присоединен к одному из полуколец, другой - к другому. Щетки расположены так, что они перекрывают зазоры между полукольцами, когда плоскость витка перпендикулярна магнитному полю (в положениях 1 и 3) и ЭДС равна нулю. Как явствует из рисунка, каждый раз, когда ЭДС меняет знак, переключаются концы внешней цепи, так что ток в ней течет всегда в одном направлении (рис. 1,г). Если к витку, показанному на рис. 1,в, добавить еще один, перпендикулярный ему, то его ЭДС будет соответствовать кривой bb, сдвинутой относительно первоначальной на 90. (рис. 2). Полная ЭДС будет соответствовать сумме двух кривых, т.е. значительно более гладкой кривой e. На практике используется большое число витков и коллекторных сегментов (рис. 3), так что пульсации ЭДС незаметны.

Генератор с параллельным возбуждением. Многие генераторы сами создают магнитное поле возбуждения (работают в режиме самовозбуждения). В генераторе с параллельным возбуждением, схема которого представлена на рис. 4, цепь возбуждения присоединена к зажимам якоря, причем предусмотрен последовательный реостат для изменения тока и, следовательно, напряжения генератора. Обмотка возбуждения состоит из большого числа витков сравнительно тонкой проволоки, так что ее сопротивление велико и ток возбуждения обычно не превышает 0,5-3% номинального выходного тока генератора. Генератор развивает свое напряжение от нуля за счет небольшого остаточного магнетизма в железной магнитной цепи. Якорь пересекает это слабое поле, и в обмотке возбуждения появляется слабый ток. Его направление таково, что создаваемое им слабое поле возбуждения добавляется к остаточному полю. В результате начинает увеличиваться наводимая ЭДС, снова увеличивается ток возбуждения, а с ним и магнитное поле. ЭДС начинает быстро нарастать, и ее рост ограничивается только реостатом в цепи возбуждения и магнитным насыщением железа.

Генератор со смешанным возбуждением. При подключении нагрузки к генератору с параллельным возбуждением напряжение на его зажимах падает, в частности, из-за того, что нагрузка отбирает часть тока возбуждения. Такое понижение нежелательно по многим соображениям: это может приводить, например, к изменению яркости осветительных ламп и пр. Его можно исключить, добавив еще одну обмотку возбуждения, соединенную последовательно либо с нагрузкой (короткий шунт), либо с якорем (длинный шунт), как показано на рис. 5. Тогда ток нагрузки будет проходить через последовательную обмотку возбуждения и увеличивать магнитное поле. Степень компаундирования можно регулировать посредством переменного резистора с малым сопротивлением, шунтирующего последовательную обмотку возбуждения (рис. 5). Если напряжение в отсутствие нагрузки равно напряжению при номинальной нагрузке, то генератор называется плоско-компаундированным (кривая В на рис. 6); если напряжение под нагрузкой больше, чем в ее отсутствие, то он - перекомпаундированный (кривая А). Недокомпаундированные генераторы (кривая D) используются редко.

Применение. Некогда генераторы постоянного тока были основными источниками электроэнергии в крупных городах, но затем их вытеснили генераторы переменного тока. В настоящее время их применяют в основном в сочетании с электродвигателями постоянного тока в промышленности и на транспорте.

электромашинные генераторы и электродвигатели: генераторы постоянного тока

К статье ЭЛЕКТРОМАШИННЫЕ ГЕНЕРАТОРЫ И ЭЛЕКТРОДВИГАТЕЛИ Теория. На рис. 1,а показан виток провода abcd, вращающийся по часовой стрелке вокруг оси 00. в магнитном поле между северным (N) и южным (S) полюсами магнита. Направление мгновенной наведенной ЭДС показано стрелками ab и cd; величина и знак ЭДС для положений 1, 2, 3 и 4 приведены на графике рис. 1,б. Когда плоскость витка перпендикулярна полю (положения 1 и 3), ЭДС равна нулю; когда же плоскость витка параллельна полю (положения 2 и 4), ЭДС максимальна. Кроме того , направление ЭДС в боковых частях витка (скажем, ab), когда они проходят мимо северного полюса, противоположно ее направлению при прохождении мимо южного полюса. Поэтому ЭДС меняет знак через каждую половину оборота в точках 1 и 3, так что в витке генерируется переменная ЭДС и, стало быть , течет переменный ток. Если предусмотреть в конструкции токособирательные (контактные) кольца , то переменный ток пойдет во внешнюю цепь . Конструкция. Генератор постоянного тока должен давать ток, который всегда течет в одном направлении. Для этого нужно переключать контакты внешней цепи в тот момент , когда ЭДС падает до нуля, прежде чем она начнет нарастать в другом направлении. Это делается с помощью коллектора, схема тически изображенного на рис. 1,в. В показанном п рост ейшем случае он представляет собой кольцо , разрезанное на две части по диаметру. Один конец витка присоединен к одному из полуколец, другой - к другому. Щетки расположены так, что они перекрывают зазоры между полукольцами, когда плоскость витка перпендикулярна магнитному полю (в положениях 1 и 3) и ЭДС равна нулю. Как явствует из рисунка, каждый раз, когда ЭДС меняет знак, переключаются концы внешней цепи, так что ток в ней течет всегда в одном направлении (рис. 1,г). Если к витку, показанному на рис. 1,в, добавить еще один, перпендикулярный ему, то его ЭДС будет соответствовать кривой bb, сдвинутой относительно первоначальной на 90. (рис. 2). Полная ЭДС будет соответствовать сумме двух кривых , т.е. значительно более гладкой кривой e. На практике используется большое число витков и коллекторных сегментов (рис. 3), так что пульсации ЭДС незаметны. Генератор с параллельным возбуждением. Многие генераторы сами создают магнитное поле возбуждения (работают в режиме самовозбуждения). В генераторе с параллельным возбуждением, схема которого представлена на рис. 4, цепь возбуждения присоединена к зажимам якоря, причем предусмотрен последовательный реостат для изменения тока и, следовательно , напряжения генератора. Обмотка возбуждения состоит из большого числа витков сравнительно тонкой проволоки, так что ее сопротивление велико и ток возбуждения обычно не превышает 0,5-3% номинального выходного тока генератора. Генератор развивает свое напряжение от нуля за счет небольшого остаточного магнетизма в железной магнитной цепи. Якорь пересекает это слабое поле, и в обмотке возбуждения появляется слабый ток. Его направление таково, что создаваемое им слабое поле возбуждения добавляется к остаточному полю. В результате начинает увеличивать ся наводимая ЭДС, снова увеличивается ток возбуждения, а с ним и магнитное поле. ЭДС начинает быстро нарастать, и ее рост ограничивается только реостатом в цепи возбуждения и магнитным насыщением железа. Генератор со смешанным возбуждением. При подключении нагрузки к генератору с параллельным возбуждением напряжение на его зажимах падает, в частности, из-за того, что нагрузка отбирает часть тока возбуждения. Такое понижение нежелательно по многим соображениям: это может приводить , например , к изменению яркости осветительных ламп и пр. Его можно исключить , добавив еще одну обмотку возбуждения, соединенную последовательно либо с нагрузкой ( короткий шунт ), либо с якорем ( длинный шунт), как показано на рис. 5. Тогда ток нагрузки будет проходить через последовательную обмотку возбуждения и увеличивать магнитное поле. Степень компаундирования можно регулировать посредством переменного резистора с малым сопротивлением, шунтирующего последовательную обмотку возбуждения (рис. 5). Если напряжение в отсутствие нагрузки равно напряжению при номинальной нагрузке, то генератор называется плоско-компаундированным ( кривая В на рис. 6); если напряжение под нагрузкой больше , чем в ее отсутствие, то он - перекомпаундированный (кривая А). Недокомпаундированные генераторы (кривая D) используются редко. Применение. Некогда генераторы постоянного тока были основными источниками электроэнергии в крупных городах, но затем их вытеснили генераторы переменного тока. В настоящее время их применяют в основном в сочетании с электродвигателями постоянного тока в промышленности и на транспорте.

Узнайте лексическое, прямое, переносное значение следующих слов:



Прикладные словари

Справочные словари

Толковые словари

Жаргонные словари

Гуманитарные словари

Технические словари